Shortwave IR Adaption of the Mid-Infrared Radiance Method of Fire Radiative Power (FRP) Retrieval for Assessing Industrial Gas Flaring Output
نویسندگان
چکیده
The radiative power (MW) output of a gas flare is a useful metric from which the rate of methane combustion and carbon dioxide emission can be inferred for inventorying purposes and regular global surveys based on such assessments are now being used to keep track of global gas flare reduction efforts. Several multispectral remote sensing techniques to estimate gas flare radiative power output have been developed for use in such surveys and single band approaches similar to those long used for the estimation of landscape fire radiative power output (FRP) can also be applied. The MIR-Radiance method, now used for FRP retrieval within the MODIS active fire products, is one such single band approach—but its applicability to gas flare targets (which are significantly hotter than vegetation fires) has not yet been assessed. Here we show that the MIR-Radiance approach is in fact not immediately suitable for retrieval of gas flare FRP due to their higher combustion temperatures but that switching to use data from a SWIR (rather than MWIR) spectral channel once again enables the method to deliver unbiased FRP retrievals. Over an assumed flaring temperature range of 1600–2200 K we find a maximum FRP error of ±13.6% when using SWIR observations at 1.6 μm and ±6.3% when using observations made at 2.2 μm. Comparing these retrievals to those made by the multispectral VIIRS ‘NightFire’ algorithm (based on Planck Function fits to the multispectral signals) we find excellent agreement (bias = 0.5 MW, scatter = 1.6 MW). An important implication of the availability of this new SWIR radiance method for gas flare analysis is the potential to apply it to long time-series from older and/or more spectrally limited instruments, unsuited to the use of multispectral algorithms. This includes the ATSR series of sensors operating between 1991–2012 on the ERS-1, ERS-2 and ENVISAT satellites and such long-term data can be used with the SWIR-Radiance method to identify key trends in global gas flaring that have occurred over the last few decades.
منابع مشابه
Study of Sentinel-3/SLSTR suitability for estimating active fire parametres
FRP (Fire Radiative Power) is the magnitude associated to the thermal radiance which explains the ecological effects of active fire; it is the component of the chemical power released from burning vegetation and emitted as radiation during the process of combustion. In this paper, a discussion of the procedures for active fire FRP is presented: The Dozier method, originally developed for use wi...
متن کاملDaytime Fire Detection Using Airborne Hyperspectral Data
The shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to 2500 nm, can include significant emitted radiance from fire. There have been relatively few evaluations of the utility of shortwave infrared remote sensing data, and in particular hyperspectral remote sensing data, for fire detection. We used an Airborne Visible InfraRed Imaging Spectrometer (AVIRIS...
متن کاملA sub-pixel-based calculation of fire radiative power from MODIS observations: 2. Sensitivity analysis and potential fire weather application
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Keywords: Fire Wildfire Biomass burning MODIS Atmospheric correction Water vapor Emiss...
متن کاملSub-Pixel Fractional Area of Wildfires from MODIS Observations: Retrieval, Validation, and Potential Applications
Using satellite, unmanned aircraft, and meteorological data, this study develops and validates a method to retrieve sub-pixel fire area fractions from fire pixels, detected at 1 km nominal spatial resolution, by the MODerate Resolution Imaging Spectroradiometer (MODIS). A two-component model (Dozier method) for retrieving sub-pixel fire area fraction and temperature has been available since 198...
متن کاملIntercomparison of MODIS and VIIRS Fire Products in Khanty-Mansiysk Russia: Implication for Characterizing Gas Flaring from Space
Gas flaring is commonly used by industrial plants for processing oil and natural gases in the atmosphere, and hence is an important anthropogenic source for various pollutants including CO2, CO, and aerosols. This study evaluates the feasibility of using satellite data to characterize gas flaring form space by focusing on the Khanty Mansiysk Autonomous Okrug in Russia, a region that is well kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018